High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter

نویسندگان

  • D. Kuzmin
  • S. Turek
چکیده

A new approach to the derivation of local extremum diminishing finite element schemes is presented. The monotonicity of the Galerkin discretization is enforced by adding discrete diffusion so as to eliminate all negative off-diagonal matrix entries. The resulting low-order operator of upwind type acts as a preconditioner within an outer defect correction loop. A generalization of TVD concepts is employed to design solution-dependent antidiffusive fluxes which are inserted into the defect vector to preclude excessive smearing of solution profiles by numerical diffusion. Standard TVD limiters can be applied edge-by-edge using a special reconstruction of local three-point stencils. As a fully multidimensional alternative to this technique, a new limiting strategy is introduced. A node-oriented flux limiter is constructed so as to control the ratio of upstream and downstream edge contributions which are associated with the positive and negative off-diagonal coefficients of the high-order transport operator, respectively. The proposed algorithm can be readily incorporated into existing flow solvers as a ‘black-box’ postprocessing tool for the matrix assembly routine. Its performance is illustrated by a number of numerical examples for scalar convection problems and incompressible flows in two and three dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

Multidimensional Fem-tvd Paradigm for Convection-dominated Flows

An algebraic approach to the design of multidimensional high-resolution schemes is introduced and elucidated in the finite element context. A centered space discretization of unstable convective terms is rendered local extremum diminishing by a conservative elimination of negative off-diagonal coefficients from the discrete transport operator. This modification leads to an upwind-biased low-ord...

متن کامل

A Class of High Resolution Shock Capturing Schemes for Non-linear Hyperbolic Conservation Laws

Abstract. A general procedure to construct a class of simple and efficient high resolution Total Variation Diminishing (TVD) schemes for non-linear hyperbolic conservation laws by introducing anti-diffusive terms with the flux limiters is presented. In the present work the numerical flux function for space discretization is constructed as a combination of numerical flux function of any entropy ...

متن کامل

High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws

The technique of obtaining high resolution, second order, oscillation free (TVD), explicit scalar difference schemes, by the addition of a limited antidiffusive flux to a first order scheme is explored and bounds derived for such limiters. A class of limiters is presented which includes a very compressive limiter due to Roe, and various limiters are compared both theoretically and numerically.

متن کامل

On the design of flux limiters for finite element discretizations with a consistent mass matrix

The algebraic flux correction (AFC) paradigm is extended to finite element discretizations with a consistent mass matrix. A nonoscillatory low-order scheme is constructed by resorting to mass lumping and conservative elimination of negative off-diagonal coefficients from the discrete transport operator. In order to recover the high accuracy of the original Galerkin scheme, a limited amount of c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004